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Abstract: BBP-type formulas are usually discovered experimentally, one at a time and in specific
bases, through computer searches. In this paper, however, we derive explicit digit extraction BBP-
type formulas in general binary bases b = 212p, for p ∈ Z+ and mod (p, 2) = 1. As particular
examples, new binary formulas are presented for π

√
3, π
√
3 log 2,

√
3 Cl2(π/3) and a couple of

other polylogaritm constants. A variant of the formula for π
√
3 log 2 derived in this paper has

been known for over ten years but was hitherto unproved. Binary BBP-type formulas for the
logarithms of an infinite set of primes and binary BBP-type representations for the arctangents of
an infinite set of rational numbers are also presented. Finally, new binary BBP-type zero relations
are established.
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1 Introduction

BBP-type formulas are formulas of the form

α =
∞∑
k=0

1/bk
l∑

j=1

aj/(kl + j)s

where s, b, l (degree, base, length respectively) and aj are integers, and α is some constant.
Formulas of this type were first introduced in a 1996 paper [1], where a formula of this type for
π was given. Such formulas allow digit extraction — the i-th digit of a mathematical constant α
in base b can be calculated directly, without needing to compute any of the previous i− 1 digits,
by means of simple algorithms that do not require multiple-precision arithmetic [2].

Apart from digit extraction, another reason the study of BBP-type formulas has continued to
attract attention is that BBP-type constants are conjectured to be either rational or normal to base
b [3, 4, 5], that is their base-b digits are randomly distributed.
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BBP-type formulas are usually discovered experimentally, one at a time and in specific bases,
through computer searches. In this paper, however, we derive explicit digit extraction BBP-type
formulas in general binary bases b = 212p, for p ∈ Z+ and mod (p, 2) = 1.

2 Definitions and notations

The polylogarithm functions denoted by Li in this paper are defined by

Lis[z] =
∞∑
k=1

zk

ks
, |z| ≤ 1 , s ∈ Z+ .

For |z| = 1 and x ∈ [0, 2π] we have

Li2n[e
ix] = Gl2n(x) + iCl2n(x)

Li2n+1[e
ix] = Cl2n+1(x) + iGl2n+1(x) ,

(1)

where Gl and Cl are Clausen sums [6] defined, for n ∈ Z+ by

Cl2n(x) =
∞∑
k=1

sin kx

k2n
, Cl2n+1(x) =

∞∑
k=1

cos kx

k2n+1

Gl2n(x) =
∞∑
k=1

cos kx

k2n
, Gl2n+1(x) =

∞∑
k=1

sin kx

k2n+1
.

(2)

We shall find the following formulas useful:

Gl2n(x) = (−1)1+[n/2]2n−1πnBn(x/2π)/n!

1

mn−1Cln(mx) =
m−1∑
r=0

Cln(x+ 2πr/m) .
(3)

Here [n/2] denotes the integer part of n/2 and Bn are the Bernoulli polynomials defined by

text

et − 1
=
∞∑
n=0

Bn(x)t
n

n!
.

In order to save space, we will give the BBP-type formulas using the compact P-notation [2]:

P (s, b, l, A) ≡
∞∑
k=0

1

bk

l∑
j=1

aj
(kl + j)s

, (4)

where s, b and l are integers, and A = (a1, a2, . . . , al) is a vector of integers.
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3 Degree s formulas

Using the identities

ReLis

[
1√
2
p exp ix

]
=
∞∑
k=1

[
1
√
2
pk

1

ks
cos kx

]
(5)

and

ImLis

[
1√
2
p exp ix

]
=
∞∑
k=1

[
1
√
2
pk

1

ks
sin kx

]
(6)

for x ∈ {π/12, 5π/12, 7π/12, 11π/12} and the fact that

cos
( π
12

)
=

√
3 + 1

2
√
2

= sin

(
7π

12

)
= sin

(
5π

12

)
= − cos

(
11π

12

)
and

sin
( π
12

)
=

√
3− 1

2
√
2

= cos

(
5π

12

)
= sin

(
11π

12

)
= − cos

(
7π

12

)
,

it is not difficult to obtain the following results, written in the P-notation (Eq. (4)):

ReLis

[
1√
2
p exp

(
iπ

12

)]
+ReLis

[
1√
2
p exp

(
7iπ

12

)]
=

1

212p
P (s, 212p, 24, (2(−

1
2
+
p
2
+11p), 0, 2(

1
2
−p
2
+11p), 210p,

−2(−
1
2
+
p
2
+9p), 0, 2(−

1
2
+
p
2
+8p),−28p,−2(

1
2
−p
2
+8p), 0,−2(−

1
2
+
p
2
+6p),

−21+6p,−2(−
1
2
+
p
2
+5p), 0,−2(

1
2
−p
2
+5p),−24p, 2(−

1
2
+
p
2
+3p), 0,

−2(−
1
2
+
p
2
+2p), 22p, 2(

1
2
−p
2
+2p), 0, 2(−

1
2
+
p
2
), 2)) , (7)

ReLis

[
1√
2
p exp

(
iπ

12

)]
− ReLis

[
1√
2
p exp

(
7iπ

12

)]
=

√
3

212p
P (s, 212p, 24, (2(−

1
2
+
p
2
+11p), 211p, 0, 0,

2(−
1
2
+
p
2
+9p), 0,−2(−

1
2
+
p
2
+8p), 0, 0,−27p,−2(−

1
2
+
p
2
+6p),

0,−2(−
1
2
+
p
2
+5p),−25p, 0, 0,−2(−

1
2
+
p
2
+3p), 0,

2(−
1
2
+
p
2
+2p), 0, 0, 2p, 2(−

1
2
+
p
2
), 0)) , (8)
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ImLis

[
1√
2
p exp

(
iπ

12

)]
+ ImLis

[
1√
2
p exp

(
7iπ

12

)]
=

√
3

212p
P (s, 212p, 24, (2(−

1
2
+
p
2
+11p), 0, 0, 210p,

2(−
1
2
+
p
2
+9p), 0, 2(−

1
2
+
p
2
+8p), 28p, 0, 0, 2(−

1
2
+
p
2
+6p),

0,−2(−
1
2
+
p
2
+5p), 0, 0,−24p,−2(−

1
2
+
p
2
+3p), 0,

−2(−
1
2
+
p
2
+2p),−22p, 0, 0,−2(−

1
2
+
p
2
), 0)) , (9)

ImLis

[
1√
2
p exp

(
iπ

12

)]
− ImLis

[
1√
2
p exp

(
7iπ

12

)]
=

1

212p
P (s, 212p, 24, (−2(−

1
2
+
p
2
+11p), 211p, 2(

1
2
−p
2
+11p), 0,

2(−
1
2
+
p
2
+9p), 21+9p, 2(−

1
2
+
p
2
+8p), 0, 2(

1
2
−p
2
+8p), 27p,−2(−

1
2
+
p
2
+6p),

0, 2(−
1
2
+
p
2
+5p),−25p,−2(

1
2
−p
2
+5p), 0,−2(−

1
2
+
p
2
+3p),−21+3p,

−2(−
1
2
+
p
2
+2p), 0,−2(

1
2
−p
2
+2p),−2p, 2(−

1
2
+
p
2
), 0)) , (10)

ReLis

[
1√
2
p exp

(
5iπ

12

)]
+ReLis

[
1√
2
p exp

(
11iπ

12

)]
=

1

212p
P

(
s, 212p, 24,

(
−2(−

1
2
+
p
2
+11p), 0, − 2(

1
2
−p
2
+11p), 210p,

2(−
1
2
+
p
2
+9p), 0,−2(−

1
2
+
p
2
+8p),−28p, 2(

1
2
−p
2
+8p), 0, 2(−

1
2
+
p
2
+6p),

−21+6p, 2(−
1
2
+
p
2
+5p), 0, 2(

1
2
−p
2
+5p),−24p,−2(−

1
2
+
p
2
+3p), 0,

2(−
1
2
+
p
2
+2p), 22p,−2(

1
2
−p
2
+2p), 0,−2(−

1
2
+
p
2
), 2

))
, (11)

ReLis

[
1√
2
p exp

(
5iπ

12

)]
− ReLis

[
1√
2
p exp

(
11iπ

12

)]
=

√
3

212p
P

(
s, 212p, 24,

(
2(−

1
2
+
p
2
+11p),−211p, 0, 0,

2(−
1
2
+
p
2
+9p), 0,−2(−

1
2
+
p
2
+8p), 0, 0, 27p,−2(−

1
2
+
p
2
+6p),

0,−2(−
1
2
+
p
2
+5p), 25p, 0, 0,−2(−

1
2
+
p
2
+3p), 0,

2(−
1
2
+
p
2
+2p), 0, 0,−2p, 2(−

1
2
+
p
2
), 0

))
, (12)
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ImLis

[
1√
2
p exp

(
5iπ

12

)]
+ ImLis

[
1√
2
p exp

(
11iπ

12

)]
=

√
3

212p
P

(
s, 212p, 24,

(
2(−

1
2
+
p
2
+11p), 0, 0,−210p,

2(−
1
2
+
p
2
+9p), 0, 2(−

1
2
+
p
2
+8p),−28p, 0, 0, 2(−

1
2
+
p
2
+6p),

0,−2(−
1
2
+
p
2
+5p), 0, 0, 24p,−2(−

1
2
+
p
2
+3p), 0,

−2(−
1
2
+
p
2
+2p), 22p, 0, 0,−2(−

1
2
+
p
2
), 0

))
(13)

and

ImLis

[
1√
2
p exp

(
5iπ

12

)]
− ImLis

[
1√
2
p exp

(
11iπ

12

)]
=

1

212p
P

(
s, 212p, 24,

(
2(−

1
2
+
p
2
+11p), 211p, − 2(

1
2
−p
2
+11p), 0,

−2(−
1
2
+
p
2
+9p), 21+9p,−2(−

1
2
+
p
2
+8p), 0,−2(

1
2
−p
2
+8p), 27p, 2(−

1
2
+
p
2
+6p),

0,−2(−
1
2
+
p
2
+5p),−25p, 2(

1
2
−p
2
+5p), 0, 2(−

1
2
+
p
2
+3p),−21+3p,

2(−
1
2
+
p
2
+2p), 0, 2(

1
2
−p
2
+2p),−2p,−2(−

1
2
+
p
2
), 0

))
. (14)

We note that although the above formulas are true for all p > 0, they are BBP-type only for
p ∈ Z+ and mod (p, 2) = 1.

4 Degree 1 formulas

When s = 1, the polylogarithms on the left hand side in each of the above formulas can be
evaluated, using the identities

arctan

(
q sinx

1− q cosx

)
= Im Li1 [q exp(ix)]

and

−1

2
log
(
1− 2q cosx+ q2

)
= Re Li1 [q exp(ix)] ,

and we have the following degree 1 binary BBP-type formulas
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−1

2
log(1− 2

(
1
2
−
p
2
)

+ 2−p − 2
(
1
2
+
p
2
−2p)

+ 2−2p)

=
1

212p
P (1, 212p, 24, (2(−

1
2
+
p
2
+11p), 0, 2(

1
2
−p
2
+11p), 210p,

−2(−
1
2
+
p
2
+9p), 0, 2(−

1
2
+
p
2
+8p),−28p,−2(

1
2
−p
2
+8p), 0,−2(−

1
2
+
p
2
+6p),

−21+6p,−2(−
1
2
+
p
2
+5p), 0,−2(

1
2
−p
2
+5p),−24p, 2(−

1
2
+
p
2
+3p), 0,

−2(−
1
2
+
p
2
+2p), 22p, 2(

1
2
−p
2
+2p), 0, 2(−

1
2
+
p
2
), 2)) , (15)

√
3

2
log

(1 + 2
(−

1
2
−
p
2
)√

3− 2
(−

1
2
−
p
2
)

+ 2−p)2

1− 2
(
1
2
−
p
2
)

− 2
(
1
2
−
3p
2

)

+ 2−2p + 2−p


=

3

212p
P (1, 212p, 24, (2(−

1
2
+
p
2
+11p), 211p, 0, 0, 2(−

1
2
+
p
2
+9p), 0,−2(−

1
2
+
p
2
+8p), 0, 0,−27p,

−2(−
1
2
+
p
2
+6p), 0,−2(−

1
2
+
p
2
+5p),−25p, 0, 0,−2(−

1
2
+
p
2
+3p), 0, 2(−

1
2
+
p
2
+2p), 0, 0, 2p, ,

2(−
1
2
+
p
2
), 0)) , (16)

√
3 arctan

 1− 2
p+1
2

1 + 2
p+1
2 − 2p+1

√3


=
3

212p
P (1, 212p, 24, (2(−

1
2
+
p
2
+11p), 0, 0, 210p, 2(−

1
2
+
p
2
+9p), 0, 2(−

1
2
+
p
2
+8p), 28p, 0, 0, 2(−

1
2
+
p
2
+6p),

0,−2(−
1
2
+
p
2
+5p), 0, 0,−24p,−2(−

1
2
+
p
2
+3p), 0,−2(−

1
2
+
p
2
+2p),−22p, 0, 0,−2(−

1
2
+
p
2
), 0)) , (17)

− arctan

 2
1−p
2 − 1

−2
1+p
2 + 1


=

1

212p
P (1, 212p, 24, (−2(−

1
2
+
p
2
+11p), 211p, 2(

1
2
−p
2
+11p),

0, 2(−
1
2
+
p
2
+9p), 21+9p, 2(−

1
2
+
p
2
+8p), 0, 2(

1
2
−p
2
+8p), 27p,−2(−

1
2
+
p
2
+6p),

0, 2(−
1
2
+
p
2
+5p),−25p,−2(

1
2
−p
2
+5p), 0,−2(−

1
2
+
p
2
+3p),−21+3p,

−2(−
1
2
+
p
2
+2p), 0,−2(

1
2
−p
2
+2p),−2p, 2(−

1
2
+
p
2
), 0)) , (18)
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−1

2
log(1 + 2

(
1
2
−
p
2
)

+ 2−p + 2
(
1
2
+
p
2
−2p)

+ 2−2p)

=
1

212p
P

(
1, 212p, 24,

(
−2(−

1
2
+
p
2
+11p), 0, − 2(

1
2
−p
2
+11p), 210p,

2(−
1
2
+
p
2
+9p), 0,−2(−

1
2
+
p
2
+8p),−28p, 2(

1
2
−p
2
+8p), 0, 2(−

1
2
+
p
2
+6p),

−21+6p, 2(−
1
2
+
p
2
+5p), 0, 2(

1
2
−p
2
+5p),−24p,−2(−

1
2
+
p
2
+3p), 0,

2(−
1
2
+
p
2
+2p), 22p,−2(

1
2
−p
2
+2p), 0,−2(−

1
2
+
p
2
), 2

))
, (19)

√
3

2
log

1 + 2−
1
2
−p
2 (1 +

√
3) + 2−p

1 + 2−
1
2
−p
2 (1−

√
3) + 2−p


=

3

212p
P

(
1, 212p, 24,

(
2(−

1
2
+
p
2
+11p),−211p, 0, 0,

2(−
1
2
+
p
2
+9p), 0,−2(−

1
2
+
p
2
+8p), 0, 0, 27p,−2(−

1
2
+
p
2
+6p),

0,−2(−
1
2
+
p
2
+5p), 25p, 0, 0,−2(−

1
2
+
p
2
+3p), 0, 2(−

1
2
+
p
2
+2p), 0, 0,−2p, 2(−

1
2
+
p
2
), 0

))
(20)

√
3 arctan

 1 + 2
p+1
2

−1 + 2
p+1
2 + 2p+1

√3


=
3

212p
P

(
1, 212p, 24,

(
2(−

1
2
+
p
2
+11p), 0, 0,−210p,

2(−
1
2
+
p
2
+9p), 0, 2(−

1
2
+
p
2
+8p),−28p, 0, 0, 2(−

1
2
+
p
2
+6p),

0,−2(−
1
2
+
p
2
+5p), 0, 0, 24p,−2(−

1
2
+
p
2
+3p), 0,

−2(−
1
2
+
p
2
+2p), 22p, 0, 0,−2(−

1
2
+
p
2
), 0

))
, (21)

and

arctan

21−p
2 + 1

2
1+p
2 + 1


=

1

212p
P

(
1, 212p, 24,

(
2(−

1
2
+
p
2
+11p), 211p, − 2(

1
2
−p
2
+11p), 0,

−2(−
1
2
+
p
2
+9p), 21+9p,−2(−

1
2
+
p
2
+8p), 0,−2(

1
2
−p
2
+8p), 27p, 2(−

1
2
+
p
2
+6p),

0,−2(−
1
2
+
p
2
+5p),−25p, 2(

1
2
−p
2
+5p), 0, 2(−

1
2
+
p
2
+3p),−21+3p,

2(−
1
2
+
p
2
+2p), 0, 2(

1
2
−p
2
+2p),−2p,−2(−

1
2
+
p
2
), 0

))
. (22)

Particular cases of these formulas will be discussed in section 6.1.
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5 Degree 2 formulas

The imaginary part of the dilogarithm function can be expressed in closed form as [6]

ImLi2
[
qeix

]
= ω log q +

1

2
Cl2(2ω)−

1

2
Cl2(2ω + 2x) +

1

2
Cl2(2x) , (23)

where

ω = arctan

(
q sinx

1− q cosx

)
.

Using Eq. (23), the results Eq. (9) and Eq. (10) can be written in degree 2 as

−(ω1 + ω2)p log 2 + Cl2(2ω1) + Cl2(2ω2)

−Cl2(2ω1 + π/6) + Cl2(−2ω2 + 5π/6) + 1/2Cl2(π/3)

= 2 ImLi2

[
1√
2
p exp

(
iπ

12

)]
+ 2 ImLi2

[
1√
2
p exp

(
7iπ

12

)]
=

√
3

212p−1
P (2, 212p, 24, (2(−

1
2
+
p
2
+11p), 0, 0, 210p,

2(−
1
2
+
p
2
+9p), 0, 2(−

1
2
+
p
2
+8p), 28p, 0, 0, 2(−

1
2
+
p
2
+6p),

0,−2(−
1
2
+
p
2
+5p), 0, 0,−24p,−2(−

1
2
+
p
2
+3p), 0,

−2(−
1
2
+
p
2
+2p),−22p, 0, 0,−2(−

1
2
+
p
2
), 0)) (24)

and

(ω2 − ω1)p log 2 + Cl2(2ω1)− Cl2(2ω2)

−Cl2(2ω1 + π/6)− Cl2(−2ω2 + 5π/6) + 4G/3

= 2 ImLi2

[
1√
2
p exp

(
iπ

12

)]
− 2 ImLi2

[
1√
2
p exp

(
7iπ

12

)]
=

1

212p−1
P (2, 212p, 24, (−2(−

1
2
+
p
2
+11p), 211p, 2(

1
2
−p
2
+11p), 0,

2(−
1
2
+
p
2
+9p), 21+9p, 2(−

1
2
+
p
2
+8p), 0, 2(

1
2
−p
2
+8p), 27p,−2(−

1
2
+
p
2
+6p),

0, 2(−
1
2
+
p
2
+5p),−25p,−2(

1
2
−p
2
+5p), 0,−2(−

1
2
+
p
2
+3p),−21+3p,

−2(−
1
2
+
p
2
+2p), 0,−2(

1
2
−p
2
+2p),−2p, 2(−

1
2
+
p
2
), 0)) , (25)

where ω1 and ω2 are given by

tanω1 =

√
3− 1

√
2
p+3 −

√
3− 1

and

tanω2 =

√
3 + 1

√
2
p+3

+
√
3− 1

.
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Similarly, using Eq. (23), the results Eq. (13) and Eq. (14) can be written in degree 2 as

−(ω3 + ω4)p log 2 + Cl2(2ω3) + Cl2(2ω4)

−Cl2(2ω3 + 5π/6) + Cl2(−2ω4 + π/6)− 1/2Cl2(π/3)

= 2 ImLi2

[
1√
2
p exp

(
5iπ

12

)]
+ 2 ImLi2

[
1√
2
p exp

(
11iπ

12

)]
=

√
3

212p−1
P

(
2, 212p, 24,

(
2(−

1
2
+
p
2
+11p), 0, 0,−210p,

2(−
1
2
+
p
2
+9p), 0, 2(−

1
2
+
p
2
+8p),−28p, 0, 0, 2(−

1
2
+
p
2
+6p),

0,−2(−
1
2
+
p
2
+5p), 0, 0, 24p,−2(−

1
2
+
p
2
+3p), 0,

−2(−
1
2
+
p
2
+2p), 22p, 0, 0,−2(−

1
2
+
p
2
), 0

))
(26)

and

(ω4 − ω3)p log 2 + Cl2(2ω3)− Cl2(2ω4)

−Cl2(2ω3 + 5π/6)− Cl2(−2ω4 + π/6) + 4G/3

= 2 ImLi2

[
1√
2
p exp

(
5iπ

12

)]
− 2 ImLi2

[
1√
2
p exp

(
11iπ

12

)]
=

1

212p−1
P

(
2, 212p, 24,

(
2(−

1
2
+
p
2
+11p), 211p, − 2(

1
2
−p
2
+11p), 0,

−2(−
1
2
+
p
2
+9p), 21+9p,−2(−

1
2
+
p
2
+8p), 0,−2(

1
2
−p
2
+8p), 27p, 2(−

1
2
+
p
2
+6p),

0,−2(−
1
2
+
p
2
+5p),−25p, 2(

1
2
−p
2
+5p), 0, 2(−

1
2
+
p
2
+3p),−21+3p,

2(−
1
2
+
p
2
+2p), 0, 2(

1
2
−p
2
+2p),−2p,−2(−

1
2
+
p
2
), 0

))
, (27)

where ω3 and ω4 are given by

tanω3 =

√
3 + 1

√
2
p+3 −

√
3 + 1

and

tanω4 =

√
3− 1

√
2
p+3

+
√
3 + 1

.

In the above formulas, G = Cl2(π/2) is Catalan’s constant.
In deriving Eqs. (26) and (27), we used Eq.4.32 pg 106 and Eq.4.17 pg 104 of [6], that is

Cl2

(π
6

)
+ Cl2

(
5π

6

)
=

4G

3

and

Cl2 (x)− Cl2 (π − x) =
1

2
Cl2 (2x) .
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6 Interesting particular cases

6.1 Degree 1 binary BBP-type formulas

We first note that Eqs. (15) and (19) give an infinite set of primes whose logarithms have binary
BBP-type formulas, which serve to augment the known ones (e.g. those found in [2]) and [5].
Similarly, Eqs. (18) and (22) give an infinite set of rationals whose arctangents have binary BBP-
type representations. We now present a couple of binary degree 1 formulas.

6.1.1 Binary BBP-type formula for log 2

The identity

log 2 = ReLi1

[
1√
2
exp

(
iπ

12

)]
+ReLi1

[
1√
2
exp

(
7iπ

12

)]
(28)

and p = 1 in Eq. (15) lead to the binary BBP-type formula

log 2 =
1

212
P (1, 212, 24, (211, 0, 211, 210,−29, 0, 28,−28,

−28, 0,−26,−27,−25, 0,−25,−24, 23, 0,−22, 22, 22, 0, 1, 2)) (29)

6.1.2 Binary BBP-type formula for π
√
3

The identity

π

3
= ImLi1

[
1√
2
exp

(
iπ

12

)]
+ ImLi1

[
1√
2
exp

(
7iπ

12

)]
(30)

and p = 1 in Eq. (17) lead to the binary BBP-type formula

π
√
3 =

9

212
P (1, 212, 24, (211, 0, 0, 210, 29, 0, 28, 28, 0, 0,

26, 0,−25, 0, 0,−24,−23, 0,−22,−22, 0, 0,−1, 0)) (31)

6.1.3 Binary BBP-type formula for
√
3 log(2 +

√
3)

The identity

log(2 +
√
3) = ReLi1

[
1√
2
exp

(
iπ

12

)]
− ReLi1

[
1√
2
exp

(
7iπ

12

)]
(32)

and p = 1 in Eq. (16) lead to the binary BBP-type formula

√
3 log(2 +

√
3) =

3

212
P (1, 212, 24, (211, 211, 0, 0, 29, 0,−28,

0, 0,−27,−26, 0,−25,−25, 0, 0,−23, 0, 22, 0, 0, 2, 1, 0)) (33)
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6.1.4 Binary BBP-type formula for arctan 1/6

The identity

− arctan

(
1

6

)
= ImLi1

[
1
√
2
3 exp

(
iπ

12

)]
− ImLi1

[
1
√
2
3 exp

(
7iπ

12

)]
(34)

and p = 3 in Eq. (18) lead to the binary BBP-type formula

arctan

(
1

6

)
=

1

235
P (1, 236, 24, (233,−232,−231, 0,−227,

−227,−224, 0,−222,−220, 218, 0,−215, 214,
213, 0, 29, 29, 26, 0, 24, 22,−1, 0)) (35)

6.2 Degree 2 binary BBP-type formulas

When p = 1 then ω1 = ω2 = π/6 and Eq. (26) and Eq. (27) simplify to

−π
3
log 2 +

5

2
Cl2

(π
3

)
= 2 ImLi2

[
1√
2
exp

(
iπ

12

)]
+ 2 ImLi2

[
1√
2
exp

(
7iπ

12

)]
(36)

and

G = 3 ImLi2

[
1√
2
exp

(
i7π

12

)]
− 3 ImLi2

[
1√
2
exp

(
iπ

12

)]
, (37)

respectively.
Choosing q = 1/2 and x = π/3 in Eq. (23) gives

−π log 2 + 5Cl2

(π
3

)
= 6 ImLi2

[
1

2
exp

(π
3

)]
. (38)

Note that

ImLi2

[
1

2
exp

(
iπ

3

)]
=

∞∑
k=1

1

2k
sin(kπ/3)

k2

=

√
3

210
P (2, 212, 24, (0, 210, 0, 29, 0, 0, 0,−27, 0,−26, 0, 0, 0,

24, 0, 23, 0, 0, 0,−2, 0,−1, 0, 0)) (39)

6.2.1 Binary BBP-type formula for
√
3Cl2(π/3)

Eliminating π log 2 between Eqs. (36) and (38) we have

Cl2

(π
3

)
=

12

5

{
ImLi2

[
1√
2
exp

(
iπ

12

)]
+ ImLi2

[
1√
2
exp

(
7iπ

12

)]}
−12

5
ImLi2

[
1

2
exp

(
iπ

3

)]
(40)
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Using Eqs. (26) (with p = 1) and (39) in Eq. (40), we obtain a binary BBP-type formula for√
3Cl2(π/3):

√
3Cl2

(π
3

)
=

9

5 · 210
P (2, 212, 24, (211,−212, 0,−210, 29, 0, 28, 3 · 28, 0, 28, 26,

0,−25,−26, 0,−3 · 24,−23, 0,−22, 22, 0, 22,−1, 0)) (41)

6.2.2 Binary BBP-type formula for π
√
3 log 2

Eliminating Cl2(π/3) between Eqs. (36) and (38) we have

π log 2 = 12

{
ImLi2

[
1√
2
exp

(
iπ

12

)]
+ ImLi2

[
1√
2
exp

(
7iπ

12

)]}
−18 ImLi2

[
1

2
exp

(
iπ

3

)]
(42)

Using Eqs. (26) (with p = 1) and (39) in Eq. (42), we obtain a binary BBP-type formula for
π
√
3 log 2:

π
√
3 log 2 =

9

210
P (2, 212, 24, (211,−3 · 211, 0,−211, 29, 0, 28, 210, 0, 3 · 27, 26, 0,

−25,−3 · 25, 0,−26,−23, 0,−22, 23, 0, 6,−1, 0) (43)

It is interesting to remark that a variant of formula (43) (formula 27, section 5, in the BBP-
Compendium) was discovered experimentally over ten years ago, but is hitherto unproved. For-
mula 27 in the Compendium is now proved by adding rational multiples of two zero relations to
Eq. (43) (See [2]).

6.2.3 Binary BBP-type formula for Catalan’s constant G

Eq. (37) leads immediately to

G =
3

212
P (2, 212, 24, (211,−211,−211, 0,−29,−210,−28, 0,

−28,−27, 26, 0,−25, 25, 25, 0, 23, 24, 22, 0, 22, 2, 1, 0)) (44)

6.3 Binary zero relations

The identity

π

6
= ImLi1

[
1

2
exp

(
iπ

3

)]
=
∞∑
k=1

1

2k
sin(kπ/3)

k
(45)

leads to the binary BBP-type formula
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π
√
3 =

9

210
P (1, 212, 24, (0, 210, 0, 29, 0, 0, 0,−27, 0,−26, 0, 0, 0, 24, 0,

23, 0, 0, 0,−2, 0,−1, 0, 0)) (46)

Note that this is the base 212 version of the formula listed for π
√
3 in section 4 of the BBP

Compendium [2].
Combining Eqs. (30) and (45), we have the identity

0 = ImLi1

[
1√
2
exp

(
iπ

12

)]
+ ImLi1

[
1√
2
exp

(
7iπ

12

)]
−2 ImLi1

[
1

2
exp

(
iπ

3

)]
(47)

which, with the use of (31) and (46) gives the binary zero relation

0 = P (1, 212, 24, (211,−212, 0,−210, 29, 0, 28, 3 · 28, 0, 28, 26, 0,−25,
−26, 0,−3 · 24,−23, 0,−22, 22, 0, 22,−1, 0)) (48)

Eq. (28) and the formula Li1(1/2) = log 2 give the identity

0 = ReLi1

[
1√
2
exp

(
iπ

12

)]
+ReLi1

[
1√
2
exp

(
7iπ

12

)]
− Li1

[
1

2

]
(49)

which leads to the binary BBP-type zero relation

0 = P (1, 212, 24, (211,−212, 211,−210,−29,−210, 28,−3 · 28,−28,−28,−26,
−28,−25,−26,−25,−3 · 24, 23,−24,−22,−22, 22,−22, 1, 0)) (50)

The identity

0 = ImLi1

[
1√
2
exp

(
iπ

12

)]
− ImLi1

[
1√
2
exp

(
7iπ

12

)]
(51)

and p = 1 in Eq. (18) lead to the binary BBP-type zero relation

0 = P (1, 212, 24, (−211, 211, 211, 0, 29, 210, 28, 0, 28, 27,−26, 0, 25,−25,
−25, 0,−23,−24,−22, 0,−22,−2, 1, 0)) (52)

The identity

0 = ReLi1

[
1√
2
exp

(
iπ

12

)]
+ReLi1

[
1√
2
exp

(
7iπ

12

)]
− 2ReLi1

[
1√
2
exp

(
iπ

4

)]
(53)

leads to the binary zero relation
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0 = P (1, 212, 24, (211, 0,−212,−3 · 210,−29, 0, 28, 3 · 28, 29, 0,−26, 0,
−25, 0, 26, 3 · 24, 23, 0,−22,−3 · 22,−23, 0, 1, 0)) (54)

The identity

0 = ReLi1

[
1√
2
exp

(
iπ

12

)]
+ReLi1

[
1√
2
exp

(
7iπ

12

)]
+2ReLi1

[
1√
2
exp

(
iπ

2

)]
− 2ReLi1

[
1

2
exp

(
iπ

3

)]
(55)

leads to the binary zero relation

0 = P (1, 212, 24, (211,−213, 211, 5 · 210,−29, 210, 28, 3 · 28,−28,−29,−26,−28,−25,
−27,−25, 3 · 24, 23, 24,−22, 5 · 22, 22,−23, 1, 0)) (56)

More degree 1 binary BBP-type zero relations in base 212 and other bases can also be found
in [7].

7 Conclusion

Using a clear and straightforward approach, explicit digit extraction BBP-type formulas in very
general binary bases were discovered. As particular examples, new binary formulas were obtained
for π

√
3,
√
3π log 2 and some other polylogaritm constants. New binary BBP-type zero relations

were also established.

References

[1] Bailey, D. H., P. B. Borwein, S. Plouffe. On the rapid computation of various polylogarith-
mic constants. Mathematics of Computation, Vol. 66, 1997, No. 218, 903–913.

[2] Bailey, D. H. A compendium of BBP-type formulas for mathematical constants, http://
crd.lbl.gov/˜dhbailey/dhbpapers/bbp-formulas.pdf. February 2011.

[3] Bailey, D. H., R. E. Crandall. On the random character of fundamental constant expansions.
Experimental Mathematics, Vol. 10, 2001, No. 2, 175–190.

[4] Borwein, J. M., D. Borwein, W. F. Galway. Finding and excluding b-ary Machin-
type BBP formulae. http://docserver.carma.newcastle.edu.au/47/1/

machin.pdf, 2002.

[5] Chamberland, M. Binary BBP-formulae for logarithms and generalized Gaussian-Mersenne
primes. Journal of Integer Sequences, Vol. 6, 2003.

31



[6] Lewin, L. Polylogarithms and associated functions. Elsevier North Holland Inc., 1981.

[7] Lafont, J. O. Degree 1 BBP-Type Zero Relations. Private communication, available from
the author, January 2011.

32


